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Abstract. The steady-state microwave heating of a unit slab consisting of three layers of materials with different
thermal conductivities is examined. The governing equations are a damped wave equation derived from Maxwell’'s
equations and a heat-force equation for the temperature. As the primary concern is to investigate the dependence
of the steady-state on the thermal-conductivity parameter, a simplifying assumption is made, namely that the
electrical conductivity is temperature-independent. Under this assumption, the damped wave equation governing
the electric field may be solved separately. An eigenfunction expansion for the problem based on the Galerkin
method is described and a fundamental-mode approximation is presented. If this approximation is applied to a
unit slab composed of three layers with different thermal conductivities, the hot-spot formation can be addressed
and a global steady-state solution is found for the whole domain. Numerical results for some different cases of
the three-layer combinations are interpreted to gain some insight in parameter dependence and the position of the
low-thermal-conductivity inner layer related to hot-spot formation.

Key words: microwave heating, hot-spot, spatial inhomogeneity, thermal conductivity, fundamental-mode ap-
proximation.

1. Introduction

In recent years there has been a growing interest in the use of microwave radiation for in-
dustrial processing such as drying, melting, smelting, and sintering. This heating technique
is proved to have some advantages over the use of a conventional oven. In the sintering of
ceramics, for example, the use of a conventional oven for prolonged periods of time is required
to achieve high equilibrium temperatures in processes that are controlled by thermal conduc-
tivity [1]. Generating heat internally by means of microwave energy can significantly reduce
the time as required in conventional sintering [2-5]. The widespread industrial applications
of microwave heating have also created a humber of problems. For most of these problems
there is the formation of a hot-spot, which is a small region of very high temperature relative
to the surroundings. Such a phenomenon can either be desirable, such as in metal melting, or
undesirable, such as in ceramic sintering.

In general, the microwave heating of a material involves a coupling of electromagnetic and
thermal phenomena. These phenomena can be expressed mathematically as a system consist-
ing of a damped wave equation derived from Maxwell's equations governing the propagation
of the microwave radiation and a forced heat equation governing the resultant of heat flow. The
forcing term in the last equation is proportional to the square amplitude of the microwave field.
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General analysis of this kind of microwave heating of a material is not easy. Until recently,
the mathematical analysis of the problem was divided into two main streams [6]. First, under
assumption that the properties of the heated material are slowly varying with temperature, the
effects of the electromagnetic field are of interest. In this case, perturbation solutions are found
for both the electric field and the temperature. Such studies have been carried out by a number
of authors such as Kriegsmae al. [1], Kriegsmann [7], Picombe and Smyth [8], Smyth

[9] and Marchant and Picombe [10]. When the thermal aspects are isolated, a simplifying
assumption can be made, namely that the microwave radiation has a constant amplitude, [11—
13], leading to a single heat-force equation for the temperatusev V20 + f(6). Here, £ (9)

is the temperature-dependent rate of energy absorption by the material.

Using the second approach, Colleman [11] investigated hot-spot formation for different
functions describing the temperature-dependent reactiorf (Ade In the case of an Arrhenius
dependency of the fornf(9) = 8§ e77/?, he found numerically that, for sufficiently smail)

6 becomes large in finite time, signifying the formation of a hot-spot. For a dependency of
the form £(8) = se /%, Hill and Smyth [13] found steady-state solutions in planar and
cylindrical geometries with constantand constant temperature on the boundary of the body.
For a quadratic dependence on temperature of the reactiofi@tand a connective heat-lost
boundary condition, for a cylindrical body, Rousstyal. [13] found numerically an approxi-
mate criterion for a hot-spot to form. It is noted that, based on an analysis of the experimental
data collected for various materials, Hill and Jennings [14] found that linear, quadratic and
exponential temperature dependencies of the reactiory(abeare valid for many materials.

Recently Pelesko and Kriegsmann [15] studied the microwave heating of a one-dimensional
ceramic laminate composed of three layers of two different types of material (identical outer
layers and an inside layer). These two materials have widely disparate effective electrical
conductivities. The two governing equations considered were the damped wave equation gov-
erning the propagation of the microwave radiation and the forced-heat equation governing
the resultant of heat flow. An asymptotic theory was set up based on the assumption that
the ratio of the two conductivities is small. This approach yields simplified equations which
were then analyzed numerically. Marchant and Liu in [16] used a Galerkin method to find
the steady-state microwave heating of a one-dimensional finite slab with electrical conduc-
tivity and thermal absorptivity governed by the Arrhenius function which, in that paper, was
approximated by a rational cubic function. The boundary conditions took account of both
connective and radiative heat losses. For small thermal absorptivity, approximate analytical
solutions were found for the steady-state temperature as well as the electric-field amplitude.
Multi-valued steady-state temperatures were found forStshaped curve of temperature-
versus-power relationship. The thermal runaway was described as when the temperature jumps
from the lower to the upper branch of the curve.

The present paper is concerned with a finite slab consisting three layers. Contrary to the
three layers in the work of Palesko and Kriegsmann [15] where the electrical conductivity
is of interest, here we assume that the layers have different thermal conductivities (thermal
diffusivities). An Arrhenius-type of temperature dependency of the reaction rate of the form
£(0) = e?@+9 for somen > 0 is used. Using the approach in [17] that is, assuming a tem-
perature independent of the electrical conductivity of the material and microwave speed, we
may solve the damped wave equation separately which leads to a single forced heat equation
governing the resulting heat flow. The forcing term in the last equation is proportional to the
spatially dependent squared amplitude of the microwave field. The technique exploited is a
one-term Galerkian approximation. It was shown in [18] and [19] that such an approximation
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makes sense to obtain the salient features of the solution. In this paper, we address the hot-spot
formation by finding a global steady-state solution for the whole domain of different thermal
conductivities. Although the paper is concerned with hot-spot formation, the approach may
be applied to a three-layer configuration of a finite slab. The novelty of this approach lies in
its simplicity.

In the next section, we present the governing equations for the microwave heating of a
material which consists of a damped wave equation that is derived from Maxwell’s equations
and a heat-force equation for the temperature. As our primary concern is to investigate the
influence of the spatial dependence of the thermal conductivity of the material, the simplifying
assumption is made that the electrical conductivity is temperature-independent. Under this
assumption, the equation governing the electrical field may be solved separately. In Section 3
some preliminary results and an eigenfunction expansion based on a Galerkin approximation
are presented. For some geometries (unit sphere, finite cylinder, and rectangular block) with
Dirichlet boundary conditions, it has been shown, numerically ([18, 20]), that the fundamental
mode is dominant. The critical parameters obtained by using this single mode approximate the
critical parameters of the solution. For this reason, we focus on this fundamental mode. The
formulation of the problem for a unit slab consisting three layers of different thermal conduc-
tivities is presented in Section 4. An analysis based on the one-term Galerkin approximation
is presented in the same section. In Section 5, we present some numerical results for some
different cases of the three-layer combinations. In the last section concluding remarks are
given.

2. Governing equations

The equations governing the microwave heating of a material are the damped wave equation
derived from Maxwell's equations governing the propagation of the microwave radiation and
the forced heat equation governing the flow of heat [17],

E, + 0 (0)E, = ¢*V?E, (1)
6, = V.(k(9)VO) + S|E>f(6). (2)

Here, E and 6 are the electric field associated with the microwave heating radiation and
the temperature, respectively. The temperature-dependent pararisttre electrical con-
ductivity of the material and: is the microwave speed. Furtheék| is the amplitude of
the electric field,k(0) is thermal conductivity of the material with the propertie®) >
0, k'(9) > 0, while f(0) is the rate of the microwave energy absorption by the material with
propertiesf(9) > 0, f'(8) > 0. Here, we takef (6) to be of Arrhenius type of the form
f(0) = e9@+9 for somea > 0. The damped wave equation (1) may be derived from the
Maxwell’s equations under the assumption thidas small and that the microwave spees
temperature-independent.

It is difficult to solve the set of Equations (1) and (2) with temperature-depengent
In this work we make the simplifying assumption thais constant. Although this creates
an unphysical temperature variationdn our primary concern is to investigate the spatial
dependence of the thermal conductivity of the mater{d). Under this assumption, in the
one-dimensional domain, Equations (1) and (2) become

E;+ok = CZExx, (3)
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0 0
0 = — | k(O)==0 | + SIEP*f(6). 4
dax ox
The damped wave Equation (3) has a travelling-wave solution of the form
E = e—klx é'(kx—wt), (5)
where
w2 o2 1/2
=1+ (1+ =
2¢? |: * < + a)2>
and

2 2\ 1/2
, o
ki = o2 |:—1+ (1+ —w2> } .
Using the above assumption, we can write the forced heat equation (2) in the form

0 0
0 = — [k(9)—9] +3R(x) f(O), (6)
ox 0x

whereR (x) = |E|? and the expression fd is of the form (5). Note that, fok(0) = 1 and
R(x) = 1, Equation (6) features prominently in combustion theory and has been studied by
many authors such as in [21, Chapters 2-4], [22—24] and many others.

In the above model the conductivity parametemwhich measures the magnitude of ther-
mal conductivity of the material, is constant throughout the medium D. In this work, however,
we intend to investigate the effect of inhomogeneity.ain the formation of a hot-spot, which
is a small region in the heated medium where the temperature is much higher than elsewhere.
For the domain D we take a unit slab [0, 1] and the conductivity is givekh(By = w(x) €"~,
whereu (x) is a function of the spatial variablke namely

wie? if 0 <x < xo,
k©) =13 noe? if xo<x <xo+e,
uz€? if xp+e<x <1,
whereu, < ui andu, < us. Here, we address hot-spot formation by finding a global steady-

state solution for the whole region [0, 1] in which this formation appears, which is in the
region[xo, xo + £].

3. Analysis of the reduced equation

We consider a model

% =V . (k(0)VO) + SR(X) f (H). (7)
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Using the transformation

6
v:/ k(s)ds, (8)
0

we may write Equation (7) as follows

av 2
o= K){V*0 4+ SE(X)F (v)},

whereK (v) = k(0(v)) and F(v) = f(6(v)). Sinceu(0) is monotonically increasing, we
observe that botlk (1) and F (1) have the same features/a®) and f (6), respectively. We
can remove the functioK (v) by letting r to be such thatd/dr = K(v(X, t)) andu(x, t) =
v(X, t) giving

ou 2
P =VuU+S§RX)F(u).
T

3.1. BEHAVIOUR OF SOLUTIONS
We will now study the behaviour of the solution of the equation

2—? = V2u +SR(X)F(u), (9)
subject the initial and Dirichlet boundary conditions

u(x,0) = H(X), u(x,t) =0 on aD. (20)

From the transformation (8) the functidnin (9) can be written in the form

2 log + yu/u)
F(u) = f(O) = exp

o+ " log(1+ yu/w)

For completeness the following results are summarized from [18]. First, we consider the
following boundary-value problem

aa_lt] = V2U + 8R(X) F (m), (11)
Ux,0 = H(X), UX,t) =0 ondD. (12)

for some parameter < 0. Letu and U denote the steady-state solution of (9), (10) and
(11), (12), respectively. ifn = maxi(X), then, by the minimum principle, we can show that
l_J(X, m) > m.

Let ¢, and 2,, be the normalized eigenfunctions and eigenvalues of the boundary-value
problem

Vzgl)n = _)\ngan, On = 0 on aD,
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Figure 1. (a) maxU (X, m) vs.m for differents, 81 < dz; (b) Intersections of maU (x, m) vs.m and the linexn;
(c) maxU (x, m) va m for 8 = 8y¢r; (d) maxcU (x, m) vs m for § = §U°C",

wherei; < A2 < Ag < ---. The steady-state solution of (11), (12) may be written in the
form U (X, m) = § F(m) E,-%‘ @; (X), whereB; = fD R(x) ¢; (X) dx. If we write M = maxX;
%‘@i(x) then maxU (x, m) = 8 M F (m). Takingu = 1, we note that

F o) — (oy)*F (m)
(m) = ,
[14 ym]lay +10g(1+ ym)]
while
Fm) = ¥ Gl y. mF(m)
T[4 ym)2[ay +log(1 + ym)]3’
where

G(a,y,m)=ay(@—2—ay)—log(l+ ym)[2+ 2ya +log(1l + ym)],

giving F'(m) > 0 form > 0 and, ifa(1 — y) < 2,thenF’(m) < 0, form > 0 and so
the graph ofF (m) vs.m intersects the linen at one and only one point for any value &f
For u = 1, a necessary condition such that the graplr 6f:) vs.m is in the form of an S-
shaped curve is that(1 — y) > 2. This analysis will still hold later for the one-term Galerkin
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approximation, provided that the first moggx) is nonnegative throughout the region For
some values of andy such that the grapl (m) vs.m has an S-shaped curve, Figure 1(a)
shows the graph of mgk (x, m) vs.m for different values o8.

When the graph of”(m) vs.m has an S-shaped curve, for which is necessarycttiat-
y) > 2, using the maximum principle, we can show (see [18]) that

(1) If 8 is such that mayU (x, m) — m = 0 has a single root, sayo, then maxi(x) < mp.

(2) If § is such that mayJ (x, m) —m = 0 has three roots, say,, m., ms, wherem, < m, <
ma3, [see Figure 1(b)], then & maxi(X) < mq1 orm, < maxiu(X) < ms. Here we note
thatmq is O (1) while mzis O (¢¥).

Let §Ye andsy,, be the largest and the smallest valué stich that the line m is tangent to
the lower and upper portion of the graph &ixx, m) vsm, respectively [see Figures 1(c) and
1(d)]. Lets be such thagVs < § < 8u,- Then, for these values &f maxU (X, m) —m = 0
has three roots. Sindé(x, m) is an upper solution ai(x) then, if H(X) = 0, u(x, t) will be
O(2) for all z. This valuesUs is a lower bound of the critical valuss", where the steady-state
solutioniz undergoes a rapid transition froon(1) to O (¢”).

3.2. FUNDAMENTAL-MODE APPROXIMATION

Let us return to the boundary-value problem (9), (10). Adopting the following approximation
procedure, which can be attributed to Galerkin, let us write

sn(x, 1) = T2V AN (1) (%),

whereA™ (1) is the solution of the integral equation

da®™ .

= A 48 [ ROOF(EIY AL 0000000 oo,
D

for 1 <i < N. The above equations constituteintegral equations wittv unknowns.

From the behaviour of the solution as studied above and assuming that the first eigen-
function ¢1(x) is nonnegative, we conclude that it makes sense to adopt a fundamental-mode
approximation,s1(X, 1) = A(t)1(X). This A(z) (may be thought of as being similar to
maxu (X, t)) is obtained from the integral equation

dA

= A+ /D ROOF (A1 (x))g1(x) do(x), (13)
Let

1(4) = /D ROOF (Ag1(x))g1(x) do(x). (14)

The equilibrium values ofA can be obtained graphically from the intersection of the straight
line 22A/8 vs. A and the curve of the graph(A) vs A. Similar to the result found in the
previous subsection, it is not difficult to see that foe= 1 a hecessary condition for the graph
I(A) vs. A to be S-shaped is

a(l—y) > 2.



108 A. Andonowati and Daniel Chandra

Fora(l — y) < 2 there is only one possible steady-state solutionAfoln combustion this
phenomenon is often called ‘loss of criticality’ which occurs for the critical values ahd
andy such thatw(1 — y) < 2. Lacey and Wake [22] showed that, for a simpler equation
V.- (e%Ve) +5€ = 0, the solution does not exhibit a critical phenomenon when 1. Tam
([24]) showed that for a sphere of unit radius with= 100, loss of criticality occurs when

y = 0.9. From the simple analysis given above doe= 100, loss of criticality occurs when

y = 0-95.

When the grapli (A) vs. A has an S-shape, there are two critical parametefs sdy s
andd.. The critical values®, where the steady state of (13)d5¢e¥) for § > 8, is obtained
when the straight lin@2A /5 vs. A is tangent to the lower portion of the S-shaped curve. On
the other-hand, the critical valug,, where the steady state of (13)dx1) for § < &, is
obtained when the straight lin€ A/ vs. A is tangent to the upper portion of the S-shaped
curve. Fors, 8o < 8 < 8%, for some critical values., and§®, depending on the initial
condition A(0) = Cy, there are three possible steady-state solutions for Equation (13), say
A1, Ay, and Az, whereA; < Ao, < Az andA; is of O(1), Az is of O(e*). We note that the
middle solutionAs is unstable, whereas, the other two are stable.

For a few different configurations of the mediuwigz. a unit sphere, a finite cylinder and a
rectangular block, it is shown in [18, 20], that it is not only the first mode which is dominant,
but also the critical value&,, and§® obtained by using a single mode, close to the critical
valuess of u.

3.3. STEADY-STATE SOLUTION FOR A UNIT SLAB GEOMETRY

To illustrate the method described above, let us consider a unit-slab geometry [0, 1]. For this
slab, we have the first eigenvalug = 72 corresponding to the normalized eigenfunction

@1 = /I/27 sin(zrx). Taking an exponential function &(x) = |E|?, with k = 1 in (5), we

may obtain the steady-state solutiohgrom

Al

34 =/DR(X)F(A¢1(X))¢1(X) dv(X).

The critical parametet® can be approximated as follows. Ldy be the smallestd
satisfyingl (A;) = A1 A1/8% then

i[z(A)—“f] =0.
dA T

Thus, we can calcula&' by first obtaining the value o, from

I(Ap) — A l'(Ap) =0

and then

AMA

Sor = —.
T I(AY)

Fora = 10,u = 1,y = 0-1, Figure 2 shows a bifurcation diagram for the temperatas
obtained from the inverse of the transformation (8) and the fundamental-mode approximation,
thatisé ~ log(1+ y Ap1/u)/y. The parametes can be seen as the magnitude of the square
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Figure 2. Bifurcation diagram of the temperatuferss.$ evaluated at = 0-5.

amplitude of the electric fiel&k(x). The bifurcation diagram shows that there is a critical
parametel., such that, fors < 3§, there is only one steady-state solutirior which the
correspondin@i is O (1) and there is a critical paramet&f such that, fos > §¢, again there
is only one steady-state solutiénbut A is O (€*). The critical values®, in this computation
3 = 6-869, plays an important role in hot-spot formation. Here a slight change in the magni-
tude of the electric field neaf" produces a substantial difference in the temperature, that is,
there is a jump of the temperature frab(1) to O (€”). A similar result can be found in [16].
Although it is not fully justified, this simple analysis may be applied to the case of a unit
slab composed of three layers of two different materials (identical outer layers and an inside
layer) as was done in [15] where the two materials have widely disparate effective electrical
conductivities. The magnitude of the electric field produced is a function of the electrical
conductivity of the material. Thermal runaway can be experienced if the magnitude of electric
field exceeds the critical value. Locally (the layers are considered as three isolated layers)
thermal runaway can happen in one of the layers, but not in the others, depending on the
effective electrical conductivity of the materials considered.

4. Formation of hot-spots in a three-layer finite slab

In this section we consider a unit slab composed of three layers of three different materials.
As we are concerned in this work with hot-spot formation, the inside layer considered has a
thermal conductivity which differs considerably from that of the outer layers. Homogeneous
Dirichlet boundary conditions will be used. Although these conditions are very idealized,
they have the advantage of making the investigation more managable, thus leading to a better
understanding of the thermal conductivity. Future work will be done to extend this approach
by including more general boundary conditions.

Let us first consider a domain D with a constant conductivity pararmetérich is constant
throughout D. From the transformation (8), we obtain
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1
9=—Iog(1+ﬂ),
14 M

where the conductivity (6) = €%, Hereu(x, t) ~ A(t)p1(x), whereA(t) satisfies

d4_ ;4 +81(A)
dt — 1 s
A0) = C1,

1(A) =/ R(x) F (A1 (x))e1(x) dx,
D

andg,, A1 are the first eigenfunction and eigenvalue of the boundary-value problem
Vz(pn = _)\fn(pn, Oy = 0 on BD

Thus
1 A
9%—Iog<1+ M) (15)
14 12

It is important to note that in (15} no longer depends on the thermal conductivity. Thus,
if we consider two separate domains with conductivittes= u; €% andk, = u, €7,
respectively, whergu; > o, it is clear that the domain with with the lower conductivjty
reaches a higher temperature, independently of the valye Dhis simple analysis suggests
that nonhomogeneity of thermal conductivity may contribute to the formation of hot-spots.

4.1. FORMULATION OF THE PROBLEM

Let us consider a unit slab [0, 1] composed of three layers having thermal condukti¥ity
expressed in the form
w1 €? if 0 <x < xg,
k@) =1 n2e? if xo<x<xo+e,
uz€? if xp+e<x <L
We formulate the problem by dividing the interval [0, 1] into three parts, thd,iso],
[x0, x0 + €] and[xg + ¢, 1], for smalle. Let 64, 6,, anddz be the temperature in the intervals

[0, xo], [x0, x0+ €] and[xo+ ¢, 1], respectively. For simplification we will consider the steady-
state solution only. We can obtain steady-state temperagurésandés by solving

1 i
ei:—log(l—i-ﬂ), i=123, (16)
14 Hi

whereu; is the solution of

dzlxt,' .
w2t SR(x)Fi(u;)) =0, i=123, 17)
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g log (1 + &>
|4 i

Fi(u;) = exp ,
a+1|og(l+ W’)
Y

i=1223.

1

Across the interfaces, the temperatdras well as the heat fluk(¢) d9/dx are continu-
ous (see [25]). Using (16) and the requirement tha continuous on the interfaces, that is
01(x0) = G2(xp) andba(xg + &) = B3(xg + €), we have the conditions

u1(xo) = paa, uz(xo) = pea,
and
uz(xo + &) = u2b, ug(xo + &) = usb,

wherea andb have to be determined as part of the problem. Together with homogeneous
Dirichlet boundary conditions, this continuity of the temperature yields boundary conditions
for each layer

u1(0) =0, u1(xo) = p1a, (18)
uz(xg) = poa, uz(xo + &) = uab, (19)
uz(xo +¢€) = usb, uz(l) =0. (20)

The heat flux in each layer may be written as

e”ef du,-
14 24 de
Mi

do;
k(6)— =
()dx

Noting thato is continuous on the interfaces= xq, xo+ ¢ and using the conditions faf; (xo)
andu; (xg + ¢) above, we see that the continuity of the heat flux across the interfaces may be
written in the form

duy dus

- N 21

d'x X=xq d'x x:xa' ( )
and

duz _ us (22)

dx x=xo+e~ dx x=xo+et

In fact, the last two additional conditions may be obtained by integration of Equations (17)
along the interfacesy andxg + .
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4.2. STEADY-STATE SOLUTIONS

To solve the problem defined by (17), (18), (19), and (20), for all the intef@alg], [xo, xo+
], and[xg + €, 1], we introduce the following transformations.

X b—a)(x —x
U= ¢+ pa—, M2=W+M2u+ﬂza,
X0 &
and
uFHMgb(l_w),
1- X0 — &
whereg, ¥, andy satisfy
d?e
o2 +8E(x)F1(uy) =0, ®(0) = ¢(x0) =0,
d?y
o? + §E(x) F2(u2) = 0, Y (xo0) = ¥ (xo+¢) =0,
d?x
WJrSE(X)Fs(us) =0, x(xo+¢e)=x@) =0.
In the first interval,[0, xo], using the above transformation and the fundamental-mode
approximation, we obtaip ~ A¢i, whereg,(x) = +/2/xgsin (Xlox) is the eigenfunction

corresponding to the smallest eigenvalye= 72/x3 of the eigenvalue problem

d2
Eﬁ =—ap. ¢(0) = ¢p(x0) = 0.

The parameteA in this approximation satisfies
R
4+ [ B0 R d =0 (23)
1J0

and

|2
uy ~ A, | —sin (lx> + ,ulai. (24)
X0 X0 X0

For the second intervalxo, xo + ¢], we make a transformatich = x — xo and soy =

¥ (&). Again, using the fundamental-mode approximation, we obtair: B, wherey,; =

2/e sin(Z£) is the eigenfunction corresponding to the smallest eigenvalue 72/&? of
the eigenvalue problem

d2y

@ =—vd, V(0)=23()=0.
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Here, B satisfies

xo+e¢
—B+ - E(x)Fo(u2)¢p1dx = 0, (25)
1 Jxg
and
2 _ _
Uy ~ B\/jsin <£(x — x0)> + uzw + uoa. (26)
€ € 3

For the last intervalxg + ¢, 1], we use a transformatiopn= x — xo — ¢, so thaty = x(n).
Again, using the fundamental-mode approximation, we oltaia Cvy, where

= 2 sin d
v1= l—xo—s l—xo—en

is the eigenfunction corresponding to the smallest eigenvalue 72/(1 — xo — ) of the
eigenvalue problem

d?v _
dn2

In this approximatiorC satisfies

—TU, v =v(l—x9—¢)=0.

1
e+ 2 [ EwFumpid =0, 27)

T1 xo+e

and

2 — oy — — oy —
us~C,| —sin(n2 0T o pgp (1220 (28)
1—xg—c¢ 1—xg—c¢ 1—xp—c¢

From (23), (25) and (27), we obtain three equations and five independent vadalsles’,
a, andb. To solve them, we use the interface conditions (21) and (22) to obtain two additional
eguations

T 2 a T 2 b—a
—A(—) 2 s = p(Z) 2 (29)
X0 X0 X0 & & &
and
T 2 b—a T 2 b
—B(— - =C — 30
(8)\/;+M2 £ <1—)C0—8) 1—xg—c¢ 'u3l—x0—8 (30)

Equations (29) and (30) may be written in the matrix fokfa b]” = [c1 c2]7,

2

2
T B
n n " -
_?2 ?2 + lfngs b B%\/g + B—Z2—/ 17x2076

1—xg—e¢

5[5

(31)
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The solutiona andb (31) can be expressed in the following from

A1 — Arper

Det(A) (32)

_Ancr — Ancay

Det(A) (33)

where DetA) is the determinant of the matrix in Equation (31).

Substituting (32) and (33) in (23), (25) and (27), we obtain three equations with three
unknowns:A, B, andC. Using these values, we may then compatandb from (32) and
(33). Further, from (24), (26) and (28) we calculate u, anduz and finally, using

yu;

1

1
9,»:—Iog<1+ ) i=12 3,
Y

we obtain the temperaturg, i = 1, 2, 3.
5. Numerical results

In the following we will present results for the smallest steady-steady solutiols andC
whenever there is more than one steady-state solution of (23), (25) and (27). This solution can
be seen as the steady-state temperature having the initial condition equal to 0 (the normalized
ambient temperature). In all computations, we have takea 10, = 0.1,y = 0-1, and
§ = 1. Based on a simplifying assumption described in Section 2, weRake= e~ *~05l,

First, we takeu; = usz = 1 and » = 1, 101, 1072, 1072 in Figures 3(a), 3(b), 3(c),
and 3(d), respectively. The middle part of the slab is locateq) at 0-45 in the interval [0,
1]. Figure 3(a) simply shows that the conductivity parametés constant throughout the
region [0, 1]. As expected, by using a fundamental-mode approximation, we find that the
temperature profile in Figure 3(a) is zero on the boundaries 0 andx = 1 and reaches a
maximum value in the middle of the slab. By taking smallgrin the region[xg, xo + €], we
find that the temperature in this region is higher than elsewhere. Figures 3(b), 3(c), 3(d) show
that, the smaller the value gf, the larger will be the discrepancy of the temperature between
[x0, X0 + €] and the rest of the region. These figures show an interesting feature. The change
in the parameter from 107! to 102 does not lead to a significant change in the temperature
of the inner layer. However, the change.ofrom the 102 to 10~ results in a drastic change
in the temperature of the inner layer, suggesting the existence of a critical valubaldw
which thermal runaway is experienced, thus pointing to the formation of a hot-spot.

We further calculate the temperature of the middle interval of the inner [ayety + €]
with the same parameters as in Figure 3, but we change the valye§ah 1 = 1072 to
w = 1073, This produces the following results

w 001 0009 0008 0007 0006 0005 0004 0003 0002 0001

0 0221 0238 0261 0291 0333 0399 05611 0767 56898 65568

It shows that there is a jump in the temperature of the inner layer that occurs for values of
in the range M03 < u < 0-002. In Section 3, we made an investigation of the bifurcation
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Figure 3. The steady-state temperature with a constant parameter 0-1, and for the thermal conductivity

parametent; = 3 = 1 in outer layers while in the inner layer (a) = 1; (b) up = 1071 €) up = 1072

(d) uo = 10-3. Notice the temperature jump from the value computed.for= 102 to that computed for
—3

uo =107"°.

diagram of vs. the parametér where this§ measures the magnitude (power) of the square
amplitude of the electric field. The thermal runaway is investigated throughstiaped curve
of an Arrhenius-type reaction rate of the microwave-energy absorpsiciemperature. There,
we found a critical valug®, where a slight change i& near this critical value results in
a substantial change in the temperature. Several authors have made similar investigations,
e.g.in [12], [15], [16] and elsewhere. The numerical investigation above calls for further
investigations into the effect of the parameteand its critical value(s).

In Figure 4, we show the steady-state temperature in the center of each of the subintervals
[0, xo], [x0, xo + €] and[xg + &, 1] as a function of the positiomy wherep; = uz =1, up =
102. A similar computation is carried out in Figure 5, but now for = 10-3. Comparing
these figures, for any position, there is a jump in temperature from the values computed for
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Figure 4. The steady-state temperature in the middle Figure 5. Same as in Figure 4, but now fof = u3 =

of each of the subinterval®, xgl, [xg, xg + ¢] and 1, up = 10-3. Notice the temperature jump from the
[xo + &, 1] as a function of the positiorg, where values computed fquy = 10~2 in Figure 4 and those
pu1=pu3=1 s =10"2andy = 0.1. for up = 10-3 in Figure 5.

> = 1072 in Figure 4 to those fop, = 1072 in Figure 5. These jumps, again, suggest the
existence of critical value(s) of.

6. Concluding remarks

We have considered a simplified model of the microwave heating of a one-dimensional unit
slab. We have described an eigenfunction expansion for the problem based on the Galerkin
method and have used a fundamental-mode approximation. We have made an investigation
of the bifurcation diagram of the temperatutess. the parametet, where thiss measures

the magnitude (power) of the square amplitude of the electric field. The thermal runaway
has been investigated through &rshaped curve of an Arrhenius-type reaction rate of the
microwave-energy absorptiors. temperature. Critical valuég, and §¢ have been found.

The critical values® is of the interest, where slight changessinear this critical value result

in substantial changes in the temperature. Similar investigations and results can be found in
[12, 15, 16] and elsewhere.

We have further applied the approximation to a unit slab consisting of three layers of
material with different thermal conductivities. We have taken the thermal conductivity to be
of the formk(0) = ne’?, whered is the temperature, while the parametehas different
values in each of the three layers. Thisneasures the magnitude of the thermal conductivity
of the material. We have addressed the hot-spot formation by finding the global steady-state
solution for the whole domain of different thermal conductivities in which the inner layer has
a smaller value of the parameter

By makingu smaller in the inner layer than in the outer layers, according to prediction, we
find a temperature in this region that is higher than in the rest. The larger the difference of
in the inner and outer layers, the larger will be the discrepancy of the temperature between the
inner layer and the rest of the region. It is very interesting to see that, given a fixed value of
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there is a jump of the temperature of the inner layer near some valueTdfis jump shows
that there is a critical value of the parametebelow which thermal runaway is experienced,
thus signifying the formation of a hot-spot.

We remark that, although the paper is concerned with hot-spot formation, the approach may
be applied to a three-layer configuration of a finite slab. Further, the use of Dirichlet boundary
conditions, which is very idealistic, allows a more managable investigation into the parameter
dependence of the problem. Future work will include more realistic heat-flux conditions on
the boundaries and further study on the effects of the parameted its critical value(s) will
be done.
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